
Abstract -  This paper introduces a new modeling approach we
call multi-level, which is well adapted to smooth objects coming
from medical data. We believe in the importance of taking into
account the global and the local characterization of an object,
within a single model. Our model takes advantage of implicit
surfaces with skeletons to represent the shape globally.
Successive implicit layers then refine the model, in order to
describe each level of detail in a coherent way, until the finest
level, which corresponds to small local variations of the shape.
We also present an original reconstruction method based on this
model. Finally an application to the vertebra is presented.
Keywords -  3D medical imaging, multi-level modeling,
reconstruction, implicit surfaces, digital volumes, skeleton

I. INTRODUCTION

A. Motivations

Medical data are larger and larger, more and more
complex, and we have to find new ways to characterize them.
This brings out the notion of modeling in computer graphics,
which is fundamental for organ imaging. In the case of simple
shapes, modeling is not an obstacle, however we can think
about the way we represent the shape. The underlying notion
is shape description. It is all the more difficult to implement
as the shape to model presents a high level of detail, such as
human organs.

In this paper, we focus on closed surfaces, and the
volumes related to them. Our aim is to synthesize the
structure of objects whose geometry is not precisely defined
or whose shape can vary.

We exclude parametric representations because these
representations need to set an a priori which is too important
on the shape to model. The other reason is that this sort of
representation is mainly dedicated to the local control of the
surface. It is difficult to apprehend a shape defined
parametrically on a global scale. And this is actually a point
we find important for our model.

It is for these reasons we choose to work on an approach
of modeling by implicit surfaces, particularly by surfaces
with skeletons [1,2,3,4]. The latter allow a global intrinsic
control of the shape based on an entity, the skeleton, globally
centered in the object. Contrary to parametric surfaces, we
can't place ourselves on an implicit surface. We can only
know whether we are inside or outside of the volume
generated by the surface, or on the surface itself. The main
asset of this type of surface is that we set no topological a
priori on the shape to model, the structural information
coming directly from the skeleton.

However, the approach by implicit surfaces can be
disadvantageous when we wish to have an efficient local
control. To model small variations on the surface, regardless
of the global shape of the object, the surface-generating
skeleton has to be extremely well detailed. This induces a
very high number of primitives, and leads to an explosion of
the complexity during a simple rendering of the surface. We
are then led to the limits of the rough approach by skeleton: a
simple skeleton allows us to model simple shapes, but for
complex shapes, the skeleton has to be very ponderous. We
are then faced with several problems, particularly in an
applicative reconstruction context. Moreover, if we use a
skeleton directly extracted from data (in a reconstruction
frame), it is to note that the skeleton is very unstable because
it is sensitive to very small variations: we lose the global
aspect of the shape descriptor.

We then naturally went towards a multi-level modeling
approach by implicit surfaces with skeletons. Our idea is that
if we work in low resolution, we have a global apprehension
of the shape. To complement, consecutive layers allow us to
refine the model by gradually increasing the resolution level
and then obtaining a higher level of detail.

This article is divided in three parts. The first part presents
our multi-level model by implicit surfaces, based on a
structural information by layers. Then we describe the
reconstruction process of 3D objects in the second part, and
finally we apply this approach to medical data, the objects
being represented as digital volumes.

II. MULTI-LEVEL MODEL
A. Implicit surfaces defined by skeleton and potential function

Before focusing on the model itself, let's go through
several notions and definitions. Implicit surfaces defined by
skeleton and potential function are characterized by a set of
geometrical primitives (the skeleton, in other words the seeds,
which here are points) and a potential function, depending on
the distance between points and seeds [5]. For a skeleton
composed of kγ  seeds, the corresponding surface is the

isosurface (The constant iso represents the isopotential for
which the points are on the surface.):

( )( ){ }isoPdFPS kkk == γ,/

The implicit surface S is the isosurface defined by the sum
(the blending) of the contributions of local potentials kF

applied to the γN  seeds of the skeleton, with the aim of
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smoothing the junctions' zones and ensuring the geometric
continuity of the surface.

The global potential function is:

( ) ( )∑=
γN

k

k PFPF

The global surface related is the following isosurface, for
the constant iso:

( ){ }isoPFPS == /

The skeleton underlying the surface is a cloud of weighed
points. Each point contains a value used for the generation of
the related surface. This value is divided by 2 when we move
from an intern layer to the next layer of the multi-level model.

Numerous potential functions are dedicated to implicit
surfaces. They depend on the Euclidean distance of a point in
space to a primitive. We use alpha-functions [6] (see Fig. 1),
generated by three parameters r, R, k (to refine blending and
potential influence problems) and that have bounded support
(to avoid useless and expensive calculus beyond the influence
radius).

This function is defined by two pieces of exponentials,
relative to another parameter α , itself in terms of r, R and k.

Fig. 1. The potential function.

B. Definition of the model

Let 0N  be the roughest level of detail. The corresponding
shape is implicitly generated by included seeds in the volume
and the potential function with three parameters we defined
earlier. Let ),,( 000 kRr  be the parameters related to each

primitive. We consider the generating points to be included in
a cubic grid 3

0n .

The following detail layer (the 1N  level) is defined in a
grid twice as thin 303

1 )2( nn =  (for the generating seeds'

coordinates). The corresponding parameters are
),2/,2/( 10101 kRRrr == , 1k  being set so that the surfaces of

which the primitives are connected, are linked. Thus, we have
the parameters ),2/,2/( 00 iiiii kRRrr ==  for the level iN .

Our model is composed of several levels that characterize
the transitions between the global shape and the surface's
local variations. The more the current layer corresponds to a
high level of detail, the more the skeleton's primitives,
generating implicit surfaces, are small (that means that the
radius of an implicit primitive decreases when the level of
detail increases).

Fig. 2. The layers of an object's model.
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Contrary to other multi-scale approaches where the level
of detail is set by a threshold for the radiuses of the implicit
primitives to represent (the latter are then scattered without
structure in the volume), we place the largest generating
seeds in the center of the object. We don't try to maximize
their radiuses to come very close to the surface to model
(concept of maximal balls), which gives us coherent global
characterization from the very first step (in terms of shape
descriptor). The volumes related to the seeds are strictly
included into the shape.

Then come the layers of smaller seeds for the next levels
of detail, which successively surround the first shape. The
implicit blending definition allows us to compact the shape.
The volumes are still included into the shape. The last level
corresponds to a primitive layer of the order of one voxel
(depending on the resolution chosen), to complete the model
on an exclusive local plane (Fig. 2).

The term shape descriptor doesn't mean that we represent
the general morphology of the object in a usual way. Here,
we talk about a description of the characteristic shapes of the
object, in order of importance according to the level we
consider. The first levels represent the shape in a rough way,
some characteristic shapes starting to appear. The last levels
represent the details, the small variations at the surface of the
object: they only have a sense for a very precise geometrical
characterization.

III. THE RECONSTRUCTION PROCESS

We apply our multi-level modeling approach to the
reconstruction of 3D objects, represented for our study by
digital volumes.

Let n be the number of voxels corresponding to the edge
of a cubic digital volume. We call nV  this starting volume. It
represents the discrete object with maximal resolution. The
sub-resolution related to nV  is calculated by embedding in a
cubic grid 3)2/(n  and by considering the digital volume 2/nV

strictly included in nV . The voxels then have edges with a
length of 2. 2/nV  is the discrete characterization of nV  by sub-

resolution. The next sub-resolutions inV 2/  are successively

calculated using the 12/ −inV  by embedding them in 3)2/( in

grids and by applying strict inclusions, until the step
preceding the null volume.

Let knV 2/  be that minimal resolution digital volume, after

k steps of sub-resolution. The volume consists in few voxels,
each having edges of length 2k according to the original
volume nV . The first level of reconstruction, minimal, is the
implicit surface generated by the medial axis (the set of the
maximal balls included in the object) of the volume knV 2/ ,

which then constitutes knA 2/ : the level 0 skeleton of the

object. When the volume consists in few points, the medial

axis is almost merged with the volume itself, but its points are
then weighed and give good initializing values of the surface.
For the following layers, medial axis extraction can reduce
the number of primitives describing the model.

The volumes' skeletons, corresponding to higher levels of
detail are calculated, not by extracting the medial axis of

inV 2/ , but of the ii nn VV 2/2/ 1 −−  differences, because we still

have 12/2/ −⊂ ii nn VV . We really have a multi-level approach: for

a given level, the surface is the blending of a kernel and
several implicit layers.

After each step, the implicit surface bases itself on the
inA 2/  skeleton to reconstruct the crust points (the boundary)

of the original digital volume nV . We then enter a classical
reconstruction process of a cloud of points by implicit
surfaces [4].

In a first step, the parameters ),,( kRr  of each seed are

initialized in a coherent way considering the 2i size of the
voxels of the grid at stake and also considering the values of
the maximal balls' radiuses associated to the seeds. The more
the skeleton corresponds to deep layers of voxels, the more
the related implicit primitives are large. The last layer,
corresponding to the nA  skeleton, represents small variations,
of the order of a one-size voxel (of the original volume nV ).

IV. APPLICATION TO MEDICAL DATA

Fig. 3, 4 and 5 show the process for the digital volume of
a vertebra coming from real data. We can see characteristic
shapes appear at each step, the more the level of detail is
high.

Fig. 3. 64V , the original digital volume, and its related sub-resolutions 32V ,

16V  and 8V .
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Fig. 4. Skeleton-layers related to differences between volumes.

Fig. 5. Multi-level reconstructions by implicit surfaces.

Because of its simplistic nature, this approach lends itself
well to the reconstruction of bulky objects with complex
topology, such as organs in medical imaging. The shape
descriptor is easily adapted according to the needs or the
computer's performances.

V. CONCLUSION

In this paper, we came up with the idea of a new model: a
multi-level model. The principle is to start off with a kernel
defined by an implicit surface, on which we superpose layers
of the same type. Thanks to the definition by blending, the

layers, when they are compacted, allow us to constitute the
shape to model.

This model is well adapted to reconstruction problems,
and in particular to smooth surfaces, such as organs in
medical imaging. The multi-level approach induces a
coherent and natural reduction of the number of primitives.
The time spent for the first levels of reconstruction is quite
short, because of the low number of seeds.

At this stage of the model’s elaboration, the prospects are:
1) First of all, we could establish a mesh on the seeds of

each layer, to control the model's topology explicitly. This
would imply, for example, the implementation of a selective
blending for the implicit surfaces generated, in order to
prevent unwanted blendings;

2) A reflection on the way to deal with transitions
between the layers. At the present time, the layers surround
each other and combine by implicit blending, but we could
establish a structure between these layers that would be more
coherent.
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